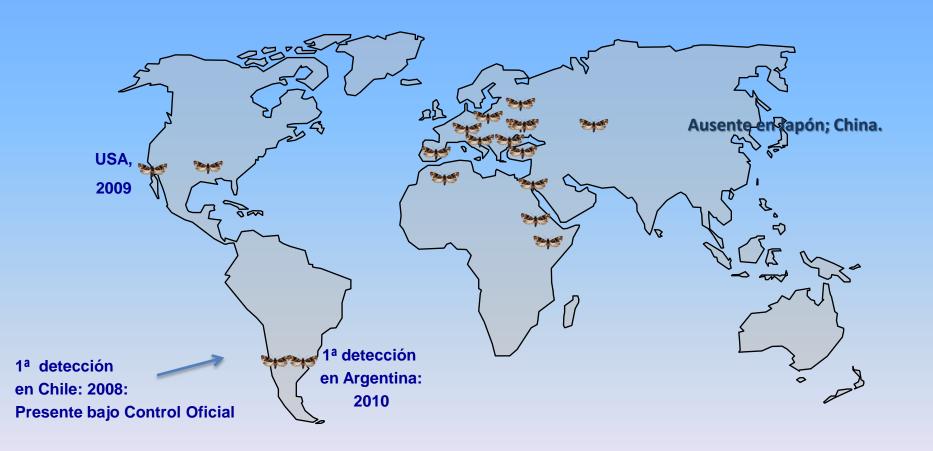
Seminario Uva de Mesa, Marbella 2015

Lobesia, la razón de cambio de nuestro escenario productivo?



UVANOVA

ADAMA

VALENT

Fuente: EPPO GLOBAL DATABASE; actualizado a Marzo 2015

Situación actual en Chile

- Resolución exenta N° 32/2015 (Enero 2015): Establece área reglamentada por polilla del racimo de la vid en la Comuna de Osorno de la Región de Los Lagos.
- Resolución N° 1889 (22 Dic. 2014): Establece área regulada por polilla del racimo de la vid en la Comuna de Lautaro de la región de la Araucanía.
- 3. Resolución N°1660 (20 Nov. 2014): Establece área reglamentada por polilla del racimo de la vid en la Comunas de Mulchen y los Ángeles de la Región del Bio Bio.

RESOLUCIÓN EXENTA Nº4287 del 23 de Junio de 2014

- Declárase el Control Obligatorio de la plaga Polilla del Racimo de la Vid, el cual se aplicará a todas las variedades de la especie vid (*Vitis vinifera*) u otras especies vegetales que sean afectadas por la plaga (actualmente Ciruelo; Arándano).
- Detección: 1 o más estados inmaduros

OBJETIVOS DEL PROGRAMA NACIONAL

- Contener, suprimir y erradicar la plaga de los cultivos que registran impacto de la plaga:
 - Estrategia de Supresión y Contención: Regiones Metropolitana,
 O'Higgins y Maule;
 - Estrategia de Supresión y Erradicación: Regiones de Atacama,

 Coquimbo, Valparaíso, Biobío y Araucanía;
- Establecer una red de vigilancia que permita conocer la distribución, ausencia
 y nivel poblacional de la plaga;
- Establecer las medidas de cuarentena que eviten la dispersión de la plaga; y
- Fiscalización del cumplimiento de las medidas determinadas por el SAG.

- Más de 30 hospederos (Maher and Thiery, 2006; Bovey, 1966; Stoeva, 1982; Thiery, 2005…)
- Hospedero nativo? Daphne gnidium (Maher and Thiery, 2006)
- Implicancias ecológicas de la capacidad adaptativa de la plaga: Especies polífagas (diferencias claras con spp.
 Monófagas e incluso con oligofafas)
- Implicancia de los hospederos alternativos en vuelos adicionales y generaciones.

Daphne gnidium

Características de la plaga

- Necesidad de rotación/alternancia de MoAs
- El número de generaciones que logra completar depende de varios factores, tales como el fotoperíodo, la humedad relativa, temperatura, calidad y disponibilidad del alimento (Gabel y Mocko, 1984; Pavan et al, 1998; Amo-Salas et al, 2011).
- Estos últimos factores mencionados también variarían su capacidad y orientación de dispersión (Becher y Guerrin, 2009), así como la capacidad reproductiva de los adultos (Thiéry y Moreau, 2005).

Según Breuer y Huber (2006) la distribución del daño en un mismo huerto no es uniforme ni constante, como tampoco su incidencia en un predio de una temporada a otra. Por lo anterior, las pérdidas productivas asociadas a esta plaga pueden diferir año a año dependiendo de las condiciones climáticas y algunos otros factores, como el tipo de hospedero y la calidad del sustrato.

Lobesia botrana

Proyecto "Evaluación de la efectividad de diversos insecticidas en el control de Lobesia botrana"

Autores:

Buzzetti K., J.C Ríos, H. Poblete, C. González y J. M. Cáceres.

Objetivos del Proyecto

- Determinar efectividad de diversos insecticidas sobre larvas de primer y último estadío de *L.botrana* y posibles interacciones.
- Determinar el período de protección efectiva de los distintos pesticidas.
- Establecer el mejor posicionamiento de los tratamientos.

Producto	Empresa	N° resolución
Betk-03®	Basf	2577
Bull®	Basf	1653
Imidan® 70 WP	Basf	1444
Mospilan® 20 SP	Basf	1443
Rufast® 75 EW	Basf	1651
Alsystin® 480 SC	Bayer	1513
Belt® 480 SC	Bayer	1516
Bulldock® 125 SC	Bayer	1518
Pyrinex® 25 CS	Chileagro	1671

Producto	Empresa	N° resolución
Delegate ®	Dow	1540
Entrust®	Dow	1533
Intrepid® SC	Dow	1542
Lorsban® 75 WG	Dow	1543
Success® 48 SC	Dow	1520
Avaunt ®	Dupont	2907
Coragen®	Dupont	2908
Kuik® 90 SP	Rotam	1938
Romectin® 1.8 EC	Rotam	1937
Mimic® 2F	Sumitagro	1071
Admiral® 10 EC	Valent	1541
Danitol® 10 EC	Valent	2564
Dipel® WG	Valent	1009
Halmark® 75 EC	Valent	1517

Laboratorio Agri Development®

Variables evaluadas

- Mortalidad de larvas a las 24-72 horas desde la infestación artificial hasta los 25 DDAs.
- Período de protección efectiva (mortalidad ≥ 90%).
- Interacción entre formulado, dosis, estadío —larvario.

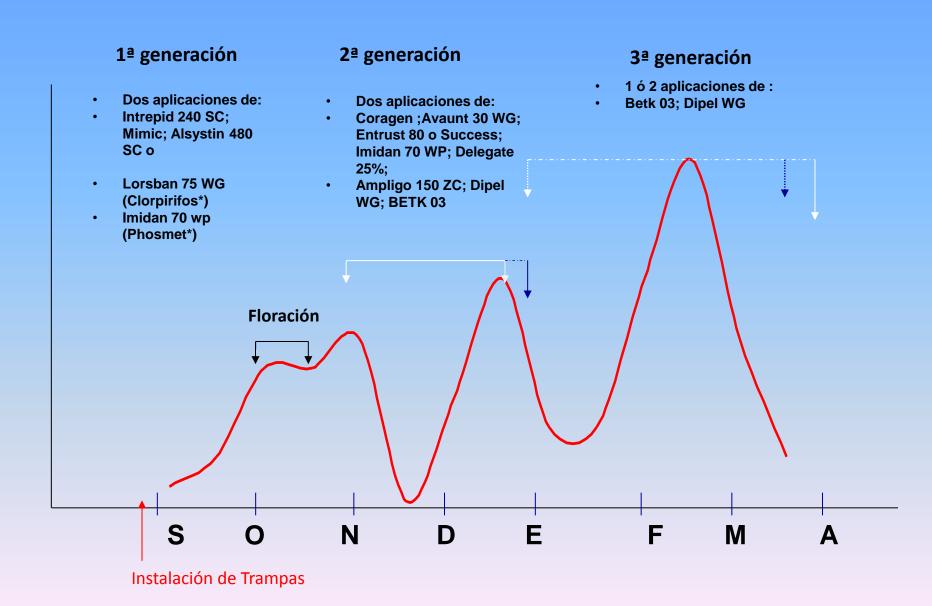
Resumen de resultados

- Dipel® WG (Bacillus thuringiensis subesp. Kustaki) presenta a 500-1000 gr/ha períodos de protección entre 7 y 13 días respectivamente.
- BETK-03® (Bacillus thuringiensis Zeolita) puede utilizarse a 800- 1600 gr/ha con intervalos de 12 días.
- Ambos productos deben emplearse preferentemente con temperaturas cálidas (máxima actividad de las larvas).

Producto	Toxicidad en insecto	DDP	Mec. Acción
Admiral® 10 EC (pyriproxyfen)	Contacto residual	18-20	7C
Alsystin® 480 SC (triflumuron)	Ingestión	12	15
Avaunt® WG (indoxacarb)	Ingestión y contacto residual	14 (1 ^{er})	22A
Belt® 480 SC (flubendiamida)	Ingestión y contacto residual	18	28
Betk-03®	Ingestión	12	11A
Bull®** (g-cyhalotrina)	Contacto residual e ingestión	17	3A
Bulldock® 125 SC (Beta-cyfluthrin)	Ingestión y contacto residual	12-17	3A
Coragen® (clorantraniliprole)	Ingestión y contacto residual	21 (1 ^{er})	28
Danitol® 10 EC (fenpropatrin)	Contacto residual e ingestión	10-15	3A

Fuente: Buzzetti et al, 2014

Producto	Toxicidad en		
	insecto	DDP	Mec. Acción
Delegate® (spinetoram)	Contacto residual e ingestión	18 (1 ^{er})-y 16 (5 ^{to})	5
Dipel® WG	Ingestión	13	11 A
Entrust® (spinosad)	Contacto e ingestión	18 (1 ^{er})-y 16 (5 ^{to})	5
Halmark® 75 EC (esfenvalerato)	Ingestión, contacto residual	14-18	3a
Imidan® 70 WP (phosmet)	Contacto residual e ingestión	18	1b
Intrepid® SC (metoxifenozide)	Contacto e ingestión	18 (1 ^{er})- y 20(5 ^{to})	18
Kuik® 90 SP (metomilo)	Contacto e ingestión	17	1 a
Lorsban® 75 WG (clorpirifos)	Contacto e ingestión	18 (1 ^{er})-y 20 (5 ^{to})	1b


Fuente: Buzzetti et al, 2014

Producto	Toxicidad en insecto	DDP	Mec. Acción
Romectin® 1.8 EC (abamectina)	Contacto, ingestión	*	6
Rufast® 75 EW (acrinatrin)	Ingestión, contacto residual	17	3a
Mospilan® 20 SP (acetamiprid)	Contacto e ingestión	21	4A

Fuente: Buzzetti et al, 2014

^{*}Abamectina sólo logró control al nivel del 75% de larvas de primer estado por hasta 7 días.

DESARROLLO EN VID: ¿ CÓMO, CUÁNDO Y QUÉ APLICAR?

Actualmente en Chile

- Nuevos estudios de validación de efectividad de productos:
 - Inia (insecticidas químicas y biológicos cuestionados temporada 2014/15)
 - Universidad de Chile (Isonet L)
 - Universidad de Talca (Rak 2 plus)

Muchas gracias!!!

Dra. Karina Buzzetti

karinabuzzetti@gmail.com